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Nonassociative triples

Let Q(∗) be a quasigroup or order n. Denote by s = s(Q) the

size of {(x, y, z) ∈ Q3; x ∗ (y ∗ z) 6= (x ∗ y) ∗ z}.

Then there exists an integer t such that

4tn− 2t2 − 24t ≤ s ≤ 4tn, and (∗)

1 ≤ s < 3n2/32 ⇒ 3tn < s. (†)
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size of {(x, y, z) ∈ Q3; x ∗ (y ∗ z) 6= (x ∗ y) ∗ z}.

Then there exists an integer t such that

4tn− 2t2 − 24t ≤ s ≤ 4tn, and (∗)

1 ≤ s < 3n2/32 ⇒ 3tn < s. (†)

t = min{dist(G,Q); G = Q(·) runs through all groups
upon Q};
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size of {(x, y, z) ∈ Q3; x ∗ (y ∗ z) 6= (x ∗ y) ∗ z}.

Then there exists an integer t such that

4tn− 2t2 − 24t ≤ s ≤ 4tn, and (∗)

1 ≤ s < 3n2/32 ⇒ 3tn < s. (†)

t = min{dist(G,Q); G = Q(·) runs through all groups
upon Q};

dist(G,Q) = |{(x, y) ∈ Q2; x ∗ y 6= xy}|.
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Nonassociative triples

Let Q(∗) be a quasigroup or order n. Denote by s = s(Q) the

size of {(x, y, z) ∈ Q3; x ∗ (y ∗ z) 6= (x ∗ y) ∗ z}.

Then there exists an integer t such that

4tn− 2t2 − 24t ≤ s ≤ 4tn, and (∗)

1 ≤ s < 3n2/32 ⇒ 3tn < s. (†)

t = min{dist(G,Q); G = Q(·) runs through all groups
upon Q};

dist(G,Q) = |{(x, y) ∈ Q2; x ∗ y 6= xy}|.

Inequalities (∗) powerful if t << n. Then s ≤ 4tn gives a
good upper bound on s. If t is small, then s is small, and the
implication (†) gives a lower bound for s.
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Nonassociative triples

Let Q(∗) be a quasigroup or order n. Denote by s = s(Q) the

size of {(x, y, z) ∈ Q3; x ∗ (y ∗ z) 6= (x ∗ y) ∗ z}.

Then there exists an integer t such that

4tn− 2t2 − 24t ≤ s ≤ 4tn, and (∗)

1 ≤ s < 3n2/32 ⇒ 3tn < s. (†)

t = min{dist(G,Q); G = Q(·) runs through all groups
upon Q};

dist(G,Q) = |{(x, y) ∈ Q2; x ∗ y 6= xy}|.

To get a lower bound for the least possible value of s ≥ 1 we
need to know whether the least possible value of t ≥ 1
satisfies 4t < 3n/32. Possible for n ≥ 1171. (If n ≥ 168 is
even, then s = 16n− 64 = 4t− 64).
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From nonassociative triples to trades

Put M = {(x, y, z) ∈ Q3; x ∗ y 6= x · y = z}.
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From nonassociative triples to trades

Put M = {(x, y, z) ∈ Q3; x ∗ y 6= x · y = z}.

Set D = {a ∈ Q; ∃i ∈ {1, 2, 3} and (x1, x2, x3) ∈ M such
that a = xi}. Consider now a pair (D(∗), D(·)) of partial
groupoids, where x ∗ y and x · y are defined if and only if
x ∗ y 6= x · y. Call it a trade.

Introduction to latin bitrades – p. 3



From nonassociative triples to trades

Put M = {(x, y, z) ∈ Q3; x ∗ y 6= x · y = z}.

Set D = {a ∈ Q; ∃i ∈ {1, 2, 3} and (x1, x2, x3) ∈ M such
that a = xi}. Consider now a pair (D(∗), D(·)) of partial
groupoids, where x ∗ y and x · y are defined if and only if
x ∗ y 6= x · y. Call it a trade.

Can we define trades directly without previous
knowledge of Q(∗) and Q(·)? If so, is there a method
how to enumerate all trades of given size and to
determine into which groups they embed only ex post?
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From nonassociative triples to trades

Put M = {(x, y, z) ∈ Q3; x ∗ y 6= x · y = z}.

Set D = {a ∈ Q; ∃i ∈ {1, 2, 3} and (x1, x2, x3) ∈ M such
that a = xi}. Consider now a pair (D(∗), D(·)) of partial
groupoids, where x ∗ y and x · y are defined if and only if
x ∗ y 6= x · y. Call it a trade.

Can we define trades directly without previous
knowledge of Q(∗) and Q(·)? If so, is there a method
how to enumerate all trades of given size and to
determine into which groups they embed only ex post?

The answer is a qualified yes.
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From nonassociative triples to trades

Put M = {(x, y, z) ∈ Q3; x ∗ y 6= x · y = z}.

Set D = {a ∈ Q; ∃i ∈ {1, 2, 3} and (x1, x2, x3) ∈ M such
that a = xi}. Consider now a pair (D(∗), D(·)) of partial
groupoids, where x ∗ y and x · y are defined if and only if
x ∗ y 6= x · y. Call it a trade.

Can we define trades directly without previous
knowledge of Q(∗) and Q(·)? If so, is there a method
how to enumerate all trades of given size and to
determine into which groups they embed only ex post?

The answer is a qualified yes.

Trades were also discovered by studying critical sets of
a latin square (the minimum partial squares with unique
completion—i.e. partial squares that intersect all
trades).
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Latin bitrades

A latin bitrade (K∗,K△) is standardly defined as a pair of
two partial latin squares in which the same cells are
occupied but never by the same symbol. They have to be
row balanced and column balanced (the set of symbols in a
given row or column is the same in both partial latin
squares).
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Latin bitrades

A latin bitrade (K∗,K△) is standardly defined as a pair of
two partial latin squares in which the same cells are
occupied but never by the same symbol. They have to be
row balanced and column balanced (the set of symbols in a
given row or column is the same in both partial latin
squares). Example:

1 2 3

4 1

2 3 4

2 3 1

1 4

4 2 3
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Latin bitrades

A latin bitrade (K∗,K△) is standardly defined as a pair of
two partial latin squares in which the same cells are
occupied but never by the same symbol. They have to be
row balanced and column balanced (the set of symbols in a
given row or column is the same in both partial latin
squares). The same example with rows and columns
named:

∗ 1 2 3

1 1 2 3

2 4 1

3 2 3 4

△ 1 2 3

1 2 3 1

2 1 4

3 4 2 3
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Latin bitrades

A latin bitrade (K∗,K△) is standardly defined as a pair of
two partial latin squares in which the same cells are
occupied but never by the same symbol. They have to be
row balanced and column balanced (the set of symbols in a
given row or column is the same in both partial latin
squares). The same example with rows and columns
named:

∗ 1 2 3

1 1 2 3

2 4 1

3 2 3 4

△ 1 2 3

1 2 3 1

2 1 4

3 4 2 3

Consider K∗, K△ as sets of triples (row,column,symbol).

K∗ = {(1, 1, 1), (1, 2, 2), . . . }, K△ = {(1, 1, 2), (1, 2, 3), . . . }.
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Bitrades as triple sets

Let K∗ and K△ be sets of triples. They form a latin bitrade

iff for every α = (a1, a2, a3) ∈ K∗ and i ∈ {1, 2, 3} there exists
a unique β = (b1, b2, b3) ∈ K△ with ai 6= bi and aj = bj for

j 6= i, j ∈ {1, 2, 3}. (α and β agree in exactly two
coordinates.)
Symmetrically for α ∈ K△.
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Bitrades as triple sets

Let K∗ and K△ be sets of triples. They form a latin bitrade

iff for every α = (a1, a2, a3) ∈ K∗ and i ∈ {1, 2, 3} there exists
a unique β = (b1, b2, b3) ∈ K△ with ai 6= bi and aj = bj for

j 6= i, j ∈ {1, 2, 3}. (α and β agree in exactly two
coordinates.)
Symmetrically for α ∈ K△.

Elements of triples can be seen as vertices, triples of K∗

and K△ as triangles. Then α and β from the definition share
an edge, and so the bitrade always yields a pseudosurface.
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Bitrades as triple sets

Let K∗ and K△ be sets of triples. They form a latin bitrade

iff for every α = (a1, a2, a3) ∈ K∗ and i ∈ {1, 2, 3} there exists
a unique β = (b1, b2, b3) ∈ K△ with ai 6= bi and aj = bj for

j 6= i, j ∈ {1, 2, 3}. (α and β agree in exactly two
coordinates.)
Symmetrically for α ∈ K△.

Elements of triples can be seen as vertices, triples of K∗

and K△ as triangles. Then α and β from the definition share
an edge, and so the bitrade always yields a pseudosurface.

A latin bitrade is called separated if it yields a surface.
Non-separated bitrades have a row (or a column, or a
symbol) that can be divided into two rows (or two columns,
or two symbols).
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A non-separated bitrade

1 2 3 4

2 3 4 1

3 1

2 3 4 1

3 2 1 4

1 3
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A non-separated bitrade

1 2 3 4

2 3 4 1

3 1

2 3 4 1

3 2 1 4

1 3

can have its middle row divided:

1 2 3 4

2 3

4 1

3 1

2 3 4 1

3 2

1 4

1 3
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A non-separated bitrade

1 2 3 4

2 3 4 1

3 1

2 3 4 1

3 2 1 4

1 3

can have its middle row divided:

1 2 3 4

2 3

4 1

3 1

2 3 4 1

3 2

1 4

1 3

For the group distance problem the spherical bitrades are
the most relevant. They are separated by definition.
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Bitrades, surfaces and permutations

The following classes of objects are equivalent:

Separated latin bitrades
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Bitrades, surfaces and permutations

The following classes of objects are equivalent:

Separated latin bitrades

Black-and-white 3-vertex colourable triangulations of an
oriented surface
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Bitrades, surfaces and permutations

The following classes of objects are equivalent:

Separated latin bitrades

Black-and-white 3-vertex colourable triangulations of an
oriented surface

Triples of fixed-point free permutations (σ1, σ2, σ3) of a
set X such that σ1σ2σ3 = idX and any two orbits of σi
and σj, 1 ≤ i < j ≤ 3 intersect in at most one point.
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Bitrades, surfaces and permutations

The following classes of objects are equivalent:

Separated latin bitrades

Black-and-white 3-vertex colourable triangulations of an
oriented surface

Triples of fixed-point free permutations (σ1, σ2, σ3) of a
set X such that σ1σ2σ3 = idX and any two orbits of σi
and σj, 1 ≤ i < j ≤ 3 intersect in at most one point.

The genus g of the surface can be computed as

size + 2(1− g) = order,

where the order is defined as r + c+ s (the aggragated
number of rows, columns and symbols) and the size is the
number of the cells (all triangles of one colour).
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3-homogeneous latin bitrades

Let every row and every column contain three cells and let
every symbol occur 3 times. Then
size = 3r = 3c = 3s = r + c+ s = order, g = 1 (a torus).
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3-homogeneous latin bitrades

Let every row and every column contain three cells and let
every symbol occur 3 times. Then
size = 3r = 3c = 3s = r + c+ s = order, g = 1 (a torus).
The resulting triangulation is 6-regular. Such triangulations
are easy to describe (e.g. by an example):
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3-homogeneous latin bitrades

Let every row and every column contain three cells and let
every symbol occur 3 times. Then
size = 3r = 3c = 3s = r + c+ s = order, g = 1 (a torus).
The resulting triangulation is 6-regular. Such triangulations
are easy to describe (e.g. by an example):

1 2 3 4

1 B/W B/W B/W B/W 3

2 B/W B/W B/W B/W 1

3 B/W B/W B/W B/W 2

1 2 3 4

Each B is a black triangle. The vertices of the leftmost top B
are (in the order of colours R, C, S) ((1, 1), (1, 2), (2, 1)). The
vertices of the righmost middle B are ((1, 1), (3, 4), (2, 4)).
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Torus expressed via tables

The black triangles of the example yield a partial operation

∗ (1, 2) (2, 3) (3, 1) (3, 4)

(1, 1) (2, 1) (3, 2) (2, 4)

(2, 2) (1, 3) (3, 2) (2, 1)

(1, 4) (1, 3) (2, 4) (2, 1)

(3, 3) (3, 2) (2, 4) (1, 3)

The white triangles give

△ (1, 2) (2, 3) (3, 1) (3, 4)

(1, 1) (3, 2) (2, 4) (2, 1)

(2, 2) (2, 1) (1, 3) (3, 2)

(1, 4) (2, 4) (2, 1) (1, 3)

(3, 3) (1, 3) (3, 2) (2, 4)
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Spherical bitrades and triangulations

The following classes of objects are equivalent:

Black-and-white triangulations of a sphere
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The following classes of objects are equivalent:
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Bipartide cubic 3-connected planar graphs
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Spherical bitrades and triangulations

The following classes of objects are equivalent:

Black-and-white triangulations of a sphere

Bipartide cubic 3-connected planar graphs

Spherical latin bitrades

BW triangulations ⇔ graphs by vertex-face duality.
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Spherical bitrades and triangulations

The following classes of objects are equivalent:

Black-and-white triangulations of a sphere

Bipartide cubic 3-connected planar graphs

Spherical latin bitrades

BW triangulations ⇔ graphs by vertex-face duality.
Spherical bitrades yield BW triangulation by definition.

The converse belongs to Cavenagh and Lisoněk (2008)
and is based upon a classical result by Heawood (1898)
that a spherical triangulations is vertex 3-colourable if and
only if all vertices are of even degree. (The colours are the
rows, columns and symbols.)
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Deriving trades from dissections

Consider a dissection of an equilateral triangle, say

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅

❅
❅
❅
❅
❅

❅
❅❅

❅
❅
❅
❅❅

❅
❅

❅

❅
❅
❅
❅❅

❅
❅

❅ ❅
❅
❅

❅
❅
❅
❅❅❅

❅
❅

❅
❅

❅
❅❅
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Deriving trades from dissections

The same dissection with named segments:

❅
❅

❅
❅

❅
❅

❅
❅

❅❅
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅❅

❅

❅
❅❅

❅ ❅
❅
❅❅❅

❅
❅❅

❅
❅
❅
❅

❅
❅

❅
❅

a

b

c

e f g

x y u v
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Deriving trades from dissections

The ∗ operation describes intersections of segments. For
example a ∗ f = u. A special case: c ∗ e = v.

❅
❅
❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅❅

❅

❅
❅❅

❅ ❅
❅
❅❅❅

❅
❅❅

a

b

c

e f g

x y u v
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Deriving trades from dissections

The △ operation describes the dissecting triangles. For
example a△g = u, i.e. (a, g, u) ∈ K△.

❅
❅
❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅❅

❅

❅
❅❅

❅ ❅
❅
❅❅❅

❅
❅❅

a

b

c

e f g

x y u v
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From bitrades to dissections

The example gives a spherical bitrade

∗ e f g

a y u v

b x y

c v x u

△ e f g

a v y u

b y x

c x u v

If we get the bitrade and wish to derive a dissection, we

must first choose a triple (c, e, v) ∈ K∗ that determines the
outer segments. Numerical values are attributed to
a, b, c, . . . as follows:
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From bitrades to dissections

The example gives a spherical bitrade

∗ e f g

a y u v

b x y

c v x u

△ e f g

a v y u

b y x

c x u v

If we get the bitrade and wish to derive a dissection, we

must first choose a triple (c, e, v) ∈ K∗ that determines the
outer segments. Numerical values are attributed to
a, b, c, . . . as follows: Assume c = 0 = e and v = 1.
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From bitrades to dissections

The example gives a spherical bitrade

∗ e f g

a y u v

b x y

c v x u

△ e f g

a v y u

b y x

c x u v

If we get the bitrade and wish to derive a dissection, we

must first choose a triple (c, e, v) ∈ K∗ that determines the
outer segments. Numerical values are attributed to
a, b, c, . . . as follows: Assume c = 0 = e and v = 1. The ∗
yields equations: a+ e = y (which is a = y), a+ f = u,
a+ g = v (which is a+ g = 1), b = x, b+ f = y, f = x, g = u.
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From bitrades to dissections

The example gives a spherical bitrade

∗ e f g

a y u v

b x y

c v x u

△ e f g

a v y u

b y x

c x u v

If we get the bitrade and wish to derive a dissection, we

must first choose a triple (c, e, v) ∈ K∗ that determines the
outer segments. Numerical values are attributed to
a, b, c, . . . as follows: Assume c = 0 = e and v = 1. The ∗
yields equations: a+ e = y (which is a = y), a+ f = u,
a+ g = v (which is a+ g = 1), b = x, b+ f = y, f = x, g = u.
This set of equations has a unique solution a = 2/5 = y,
b = 1/5 = f = x, u = 3/5 = g.
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From latin bitrades to dissections

A pointed latin bitrade (K, a) is a bitrade K = (K∗,K△) with

a = (a1, a2, a3) ∈ K∗. With such a bitrade associate a set of
equations Eq(T, a) which includes equations a1 = 0, a2 = 0,

a3 = 1 and b1 + b2 = b3 for every b = (b1, b2, b3) ∈ K∗, b 6= a.
Assume that K is spherical.
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From latin bitrades to dissections

A pointed latin bitrade (K, a) is a bitrade K = (K∗,K△) with

a = (a1, a2, a3) ∈ K∗. With such a bitrade associate a set of
equations Eq(T, a) which includes equations a1 = 0, a2 = 0,

a3 = 1 and b1 + b2 = b3 for every b = (b1, b2, b3) ∈ K∗, b 6= a.
Assume that K is spherical.
Fact 1. Eq(T, a) always yields a unique solution.
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From latin bitrades to dissections

A pointed latin bitrade (K, a) is a bitrade K = (K∗,K△) with

a = (a1, a2, a3) ∈ K∗. With such a bitrade associate a set of
equations Eq(T, a) which includes equations a1 = 0, a2 = 0,

a3 = 1 and b1 + b2 = b3 for every b = (b1, b2, b3) ∈ K∗, b 6= a.
Assume that K is spherical.
Fact 1. Eq(T, a) always yields a unique solution.
Denote by Σ the triangle with vertices (0, 0), (1, 0), (0, 1). For

every b = (b1, b2, b3) ∈ K∗, b 6= a, let P (b, a) be the point
(β2, β1), where βi is the solution to bi.
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From latin bitrades to dissections

A pointed latin bitrade (K, a) is a bitrade K = (K∗,K△) with

a = (a1, a2, a3) ∈ K∗. With such a bitrade associate a set of
equations Eq(T, a) which includes equations a1 = 0, a2 = 0,

a3 = 1 and b1 + b2 = b3 for every b = (b1, b2, b3) ∈ K∗, b 6= a.
Assume that K is spherical.
Fact 1. Eq(T, a) always yields a unique solution.
Denote by Σ the triangle with vertices (0, 0), (1, 0), (0, 1). For

every b = (b1, b2, b3) ∈ K∗, b 6= a, let P (b, a) be the point
(β2, β1), where βi is the solution to bi.
Fact 2 Every point P (b, a) is within Σ.

Introduction to latin bitrades – p. 16



From latin bitrades to dissections

A pointed latin bitrade (K, a) is a bitrade K = (K∗,K△) with

a = (a1, a2, a3) ∈ K∗. With such a bitrade associate a set of
equations Eq(T, a) which includes equations a1 = 0, a2 = 0,

a3 = 1 and b1 + b2 = b3 for every b = (b1, b2, b3) ∈ K∗, b 6= a.
Assume that K is spherical.
Fact 1. Eq(T, a) always yields a unique solution.
Denote by Σ the triangle with vertices (0, 0), (1, 0), (0, 1). For

every b = (b1, b2, b3) ∈ K∗, b 6= a, let P (b, a) be the point
(β2, β1), where βi is the solution to bi.
Fact 2 Every point P (b, a) is within Σ.
For c = (c1, c2, c3) ∈ K△ let γ1 = (b1, c2, c3), γ2 = (c1, b2, c3)

and γ3 = (c1, c2, b3) be elements of K∗. Denote by ∆(c, a)
the triangle with vertices P (γ1, a), P (γ2, a) and P (γ3, a).
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From latin bitrades to dissections

A pointed latin bitrade (K, a) is a bitrade K = (K∗,K△) with

a = (a1, a2, a3) ∈ K∗. With such a bitrade associate a set of
equations Eq(T, a) which includes equations a1 = 0, a2 = 0,

a3 = 1 and b1 + b2 = b3 for every b = (b1, b2, b3) ∈ K∗, b 6= a.
Assume that K is spherical.
Fact 1. Eq(T, a) always yields a unique solution.
Denote by Σ the triangle with vertices (0, 0), (1, 0), (0, 1). For

every b = (b1, b2, b3) ∈ K∗, b 6= a, let P (b, a) be the point
(β2, β1), where βi is the solution to bi.
Fact 2 Every point P (b, a) is within Σ.
For c = (c1, c2, c3) ∈ K△ let γ1 = (b1, c2, c3), γ2 = (c1, b2, c3)

and γ3 = (c1, c2, b3) be elements of K∗. Denote by ∆(c, a)
the triangle with vertices P (γ1, a), P (γ2, a) and P (γ3, a).
Fact 3 The triangle Σ is dissected by the set of all ∆(c, a),
c ∈ K△ that do not degenerate.
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Dissections and counting modulo

Every dissection can be adjusted to integer coordinates.
Let n be the size of the dissected triangle. Then b1 ∗ b2 = b3
implies b1 + b2 = b3 mod n. This means that K(∗) can be
embedded into Zn(+). Example:
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❅
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❅
❅
❅
❅

❅
❅
❅
❅

❅
❅❅

❅

❅
❅❅

❅ ❅
❅
❅❅❅

❅
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❅
❅
❅
❅

❅
❅

❅
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1

0

0 1 3

1 2 3 5
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Embedding a spherical latin bitrade

Let K = (K∗,K△) be a spherical latin bitrade. Fix

a = (a1, a2, a3) ∈ K∗. Then Eq(T, a) determines a dissection
that can be adjusted to counting modulo n.
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Embedding a spherical latin bitrade

Let K = (K∗,K△) be a spherical latin bitrade. Fix

a = (a1, a2, a3) ∈ K∗. Then Eq(T, a) determines a dissection
that can be adjusted to counting modulo n. We thus get
three mappings ϕi such that ϕ1(b1) + ϕ2(b2) ≡ ϕ3(b3) mod n

whenever b = (b1, b2, b3) ∈ K∗.
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Let K = (K∗,K△) be a spherical latin bitrade. Fix

a = (a1, a2, a3) ∈ K∗. Then Eq(T, a) determines a dissection
that can be adjusted to counting modulo n. We thus get
three mappings ϕi such that ϕ1(b1) + ϕ2(b2) ≡ ϕ3(b3) mod n

whenever b = (b1, b2, b3) ∈ K∗.
However, this need not be an embedding of K(∗) to Zn

since there may be, say, ϕ1(a1) = ϕ1(b1).
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Embedding a spherical latin bitrade

Let K = (K∗,K△) be a spherical latin bitrade. Fix

a = (a1, a2, a3) ∈ K∗. Then Eq(T, a) determines a dissection
that can be adjusted to counting modulo n. We thus get
three mappings ϕi such that ϕ1(b1) + ϕ2(b2) ≡ ϕ3(b3) mod n

whenever b = (b1, b2, b3) ∈ K∗.
However, this need not be an embedding of K(∗) to Zn

since there may be, say, ϕ1(a1) = ϕ1(b1).

By using a′ ∈ K∗ in place of a, we obtain n′ and
ϕ′ = (ϕ′

1, ϕ
′

2, ϕ
′

3). Together ϕ and ϕ′ send K(∗) to Zn × Zn′.
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three mappings ϕi such that ϕ1(b1) + ϕ2(b2) ≡ ϕ3(b3) mod n

whenever b = (b1, b2, b3) ∈ K∗.
However, this need not be an embedding of K(∗) to Zn

since there may be, say, ϕ1(a1) = ϕ1(b1).

By using a′ ∈ K∗ in place of a, we obtain n′ and
ϕ′ = (ϕ′

1, ϕ
′

2, ϕ
′

3). Together ϕ and ϕ′ send K(∗) to Zn × Zn′ .

It can be proved that for a given b ∈ K∗ and i ∈ {1, 2, 3}

there exists a′ ∈ K∗ with ϕi(a
′

i) 6= ϕi(bi).
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Embedding a spherical latin bitrade

Let K = (K∗,K△) be a spherical latin bitrade. Fix

a = (a1, a2, a3) ∈ K∗. Then Eq(T, a) determines a dissection
that can be adjusted to counting modulo n. We thus get
three mappings ϕi such that ϕ1(b1) + ϕ2(b2) ≡ ϕ3(b3) mod n

whenever b = (b1, b2, b3) ∈ K∗.
However, this need not be an embedding of K(∗) to Zn

since there may be, say, ϕ1(a1) = ϕ1(b1).

By using a′ ∈ K∗ in place of a, we obtain n′ and
ϕ′ = (ϕ′

1, ϕ
′

2, ϕ
′

3). Together ϕ and ϕ′ send K(∗) to Zn × Zn′ .

It can be proved that for a given b ∈ K∗ and i ∈ {1, 2, 3}

there exists a′ ∈ K∗ with ϕi(a
′

i) 6= ϕi(bi). Hence by

increasing the number of cyclic factors we finally must get
an embedding of K(∗) into a finite abelian group.
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Embedding a spherical latin bitrade

Let K = (K∗,K△) be a spherical latin bitrade. Fix

a = (a1, a2, a3) ∈ K∗. Then Eq(T, a) determines a dissection
that can be adjusted to counting modulo n. We thus get
three mappings ϕi such that ϕ1(b1) + ϕ2(b2) ≡ ϕ3(b3) mod n

whenever b = (b1, b2, b3) ∈ K∗.
However, this need not be an embedding of K(∗) to Zn

since there may be, say, ϕ1(a1) = ϕ1(b1).

By using a′ ∈ K∗ in place of a, we obtain n′ and
ϕ′ = (ϕ′

1, ϕ
′

2, ϕ
′

3). Together ϕ and ϕ′ send K(∗) to Zn × Zn′ .

It can be proved that for a given b ∈ K∗ and i ∈ {1, 2, 3}

there exists a′ ∈ K∗ with ϕi(a
′

i) 6= ϕi(bi). Hence by

increasing the number of cyclic factors we finally must get
an embedding of K(∗) into a finite abelian group. Thus
Every spherical latin trade can be embedded into an
abelian group.
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Functors

Let K = (K(∗),K(△)) be a latin bitrade. Suppose that
K = R ∪ C ∪ S, where the sets R, C and S are pairwise
disjoint (rows, columns, symbols).

From each product u∗v = w make a defining relation
u+ v = w. Denote by G(K) the abelian group with
these defining relations.
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Functors

Let K = (K(∗),K(△)) be a latin bitrade. Suppose that
K = R ∪ C ∪ S, where the sets R, C and S are pairwise
disjoint (rows, columns, symbols).

From each product u∗v = w make a defining relation
u+ v = w. Denote by G(K) the abelian group with
these defining relations.

Then G(K) ∼= Z× Z×H(K), where H(K) is finite. It is
possible to define H(K) functorially.
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Functors

Let K = (K(∗),K(△)) be a latin bitrade. Suppose that
K = R ∪ C ∪ S, where the sets R, C and S are pairwise
disjoint (rows, columns, symbols).

From each product u∗v = w make a defining relation
u+ v = w. Denote by G(K) the abelian group with
these defining relations.

Then G(K) ∼= Z× Z×H(K), where H(K) is finite. It is
possible to define H(K) functorially.

It is more precise to write H(K(∗)) since the operation △

has no impact upon the definition. Now, K(∗) embeds
into H(K(∗)) if K is spherical. Suprisingly, in that case
H(K(∗)) ∼= H(K(△)).
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Functors

Let K = (K(∗),K(△)) be a latin bitrade. Suppose that
K = R ∪ C ∪ S, where the sets R, C and S are pairwise
disjoint (rows, columns, symbols).

From each product u∗v = w make a defining relation
u+ v = w. Denote by G(K) the abelian group with
these defining relations.

Then G(K) ∼= Z× Z×H(K), where H(K) is finite. It is
possible to define H(K) functorially.

It is more precise to write H(K(∗)) since the operation △

has no impact upon the definition. Now, K(∗) embeds
into H(K(∗)) if K is spherical. Suprisingly, in that case
H(K(∗)) ∼= H(K(△)).

However, there exist toroidal trades such that K(∗)
embeds into H(K(∗)), while H(K(△)) is trivial.
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Generating latin bitrades

The spherical latin bitrades can be generated very
efficiently using the program plantri because they are
equivalent to bipartide 3-regular planar graphs. The
algorithm is based upon elementary expansion moves.
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Generating latin bitrades

The spherical latin bitrades can be generated very
efficiently using the program plantri because they are
equivalent to bipartide 3-regular planar graphs. The
algorithm is based upon elementary expansion moves.

There have been described several constructive
methods how to blow up the genus, and thus to obtain
latin bitrades of all genera when starting from spherical
trades. None of them seems to have been really
implemented.

Introduction to latin bitrades – p. 20



Generating latin bitrades

The spherical latin bitrades can be generated very
efficiently using the program plantri because they are
equivalent to bipartide 3-regular planar graphs. The
algorithm is based upon elementary expansion moves.

There have been described several constructive
methods how to blow up the genus, and thus to obtain
latin bitrades of all genera when starting from spherical
trades. None of them seems to have been really
implemented.

The plantri program can be used to generate graphs up
to the vertex size 50, which means the trade size up to
25.
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Trades and group distances

The question about gdist(n) = min dist(G,Q), Q a
quasigroup, G group of order n can be reformulated by
asking about the trade K = (K(∗),K(△)) of the least
possible size m such that K(∗) embeds into a group of
order n.
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Trades and group distances

The question about gdist(n) = min dist(G,Q), Q a
quasigroup, G group of order n can be reformulated by
asking about the trade K = (K(∗),K(△)) of the least
possible size m such that K(∗) embeds into a group of
order n.

There is no formal proof that every such trade K is
spherical. However, it is plausible to assume that.
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Trades and group distances

The question about gdist(n) = min dist(G,Q), Q a
quasigroup, G group of order n can be reformulated by
asking about the trade K = (K(∗),K(△)) of the least
possible size m such that K(∗) embeds into a group of
order n.

There is no formal proof that every such trade K is
spherical. However, it is plausible to assume that.

There is no formal proof that every such spherical trade
K may be embedded into a cyclic group. However, this
is plausible to assume since it seems natural to expect
that K(∗) embeds into Zp, where p is the least prime
dividing n.

Introduction to latin bitrades – p. 21



Trades and dissections

Denote thus by t(n) the least possible size of a
spherical latin bitrade that embeds into Zn.
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Trades and dissections

Denote thus by t(n) the least possible size of a
spherical latin bitrade that embeds into Zn.

Embeddings of spherical latin bitrades into Zn

correspond to integral dissections of equilateral
triangles of size n with no six ways vertex.
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spherical latin bitrade that embeds into Zn.

Embeddings of spherical latin bitrades into Zn

correspond to integral dissections of equilateral
triangles of size n with no six ways vertex.

Every such dissection can be computed from a pointed
spherical bitrade as a solution to a matrix equation.
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Denote thus by t(n) the least possible size of a
spherical latin bitrade that embeds into Zn.

Embeddings of spherical latin bitrades into Zn

correspond to integral dissections of equilateral
triangles of size n with no six ways vertex.

Every such dissection can be computed from a pointed
spherical bitrade as a solution to a matrix equation.

There have computed all t(n) with t(n) ≤ 23. The
greatest such n is equal to 433. For n higher than 30 the
only way seems to be to use estimates.
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Trades and dissections

Denote thus by t(n) the least possible size of a
spherical latin bitrade that embeds into Zn.

Embeddings of spherical latin bitrades into Zn

correspond to integral dissections of equilateral
triangles of size n with no six ways vertex.

Every such dissection can be computed from a pointed
spherical bitrade as a solution to a matrix equation.

There have computed all t(n) with t(n) ≤ 23. The
greatest such n is equal to 433. For n higher than 30 the
only way seems to be to use estimates.

Besides t(n) let us consider also t̂(n) which refers to
spherical latin bitrades that embed to Zn, but not to Zd,
d a proper divisor of n (integral dissections of size n with
the gcd of dissecting triangles equal to 1).
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Estimates

3 log3(p) ≤ gdist(p), p the least prime dividing n.
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3 log3(p) ≤ gdist(p), p the least prime dividing n.

t̂(n) < 5 log2(n)
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Estimates

3 log3(p) ≤ gdist(p), p the least prime dividing n.

t̂(n) < 5 log2(n)

For p prime we thus have estimates

2.73 log(p) < gdist(p) < 7.21 log(p).
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Estimates

3 log3(p) ≤ gdist(p), p the least prime dividing n.

t̂(n) < 5 log2(n)

For p prime we thus have estimates

2.73 log(p) < gdist(p) < 7.21 log(p).

Conjecture: spb(n)− 1 ≤ t̂(n) ≤ spb(n). The spiral
bound spb(n) is defined by

aspb(n)−1 < n ≤ aspb(n), where

a1 = a2 = a3, ak+1 = ak−1 + ak−2
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Estimates

3 log3(p) ≤ gdist(p), p the least prime dividing n.

t̂(n) < 5 log2(n)

For p prime we thus have estimates

2.73 log(p) < gdist(p) < 7.21 log(p).

Conjecture: spb(n)− 1 ≤ t̂(n) ≤ spb(n). The spiral
bound spb(n) is defined by

aspb(n)−1 < n ≤ aspb(n), where

a1 = a2 = a3, ak+1 = ak−1 + ak−2

That would suggest the “right” constant to be ∼ 3.56.
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